Abstract

<abstract><p>In this paper, the initial-value problem for a class of first order delay differential equations, which emerges as a model for population dynamics, is considered. To solve this problem numerically, using the finite difference method including interpolating quadrature rules with the basis functions, we construct a fitted difference scheme on a uniform mesh. Although this scheme has the same rate of convergence, it has more efficiency and accuracy compared to the classical Euler scheme. The different models, Nicolson's blowfly and Mackey–Glass models, in population dynamics are solved by using the proposed method and the classical Euler method. The numerical results obtained from here show that the proposed method is reliable, efficient, and accurate.</p></abstract>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.