Abstract

In this paper, a collocation method based on shifted second‐order Chebyshev polynomials is implemented to obtain the approximate solution of the stochastic Itô–Volterra integral equation of Abel type with weakly singular kernel. In this method, operational matrices are used to convert the stochastic Itô–Volterra integral equation to algebraic equations that are linear. The algorithm of the proposed numerical scheme has been presented in this paper. Also, the error bound and convergence of the proposed method are well established. Consequently, two illustrative examples are provided to demonstrate the efficiency, plausibility, reliability, and consistency of the current methodology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.