Abstract
Nonlinear chaotic systems yield many interesting features related to different physical phenomena and practical applications. These systems are very sensitive to initial conditions at each time-iteration level in a numerical algorithm. In this article, we study the behavior of some nonlinear chaotic systems by a new numerical approach based on the concept of Galerkin–Petrov time-discretization formulation. Computational algorithms are derived to calculate dynamical behavior of nonlinear chaotic systems. Dynamical systems representing weather prediction model and finance model are chosen as test cases for simulation using the derived algorithms. The obtained results are compared with classical RK-4 and RK-5 methods, and an excellent agreement is achieved. The accuracy and convergence of the method are shown by comparing numerically computed results with the exact solution for two test problems derived from another nonlinear dynamical system in two-dimensional space. It is shown that the derived numerical algorithms have a great potential in dealing with the solution of nonlinear chaotic systems and thus can be utilized to delineate different features and characteristics of their solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.