Abstract

The mycobacteriophages encode unique proteins that are potent to be therapeutic agents. We screened several clones with mycobactericidal properties from a genomic library of mycobacteriophages. Here we report the properties of one such clone coding the gene product, Gp49, of the phage Che12. Gp49 is a 16 kD dimeric protein having an HTH motif at its C-terminal and is highly conserved among mycobacteriophages and likely to be part of phage DNA replication machinery. Alphafold predicts it to be an α-helical protein. However, its CD spectrum showed it to be predominantly β-sheeted. It is a high-affinity heparin-binding protein having similarities with the macrophage protein Azurocidin. Its β-sheeted apo-structure gets transformed into α-helix upon binding to heparin. It binds to linear dsDNA as well as ssDNA and RNA cooperatively in a sequence non-specific manner. This DNA binding property enables it to inhibit both in vitro and in vivo transcription. The c-terminal HTH motif is responsible for binding to both heparin and nucleic acids. Its in vivo localization on DNA could cause displacements of many DNA-binding proteins from the bacterial chromosome. We surmised that the bactericidal activity of Gp49 arises from its non-specific DNA binding leading to the inhibition of many host-DNA-dependent processes. Its heparin-binding ability could have therapeutic/diagnostic usages in bacterial sepsis treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.