Abstract

There has been no research conducted thus far on the semiconducting behaviour of biomaterials. In this study, we present an n-type semiconducting biomaterial composed of amorphous kenaf cellulose fibre (AKCF) paper with a voltage-controlled N-type negative resistance. The AKCF generates an alternating-current wave with a frequency of 40.6 MHz from a direct-current voltage source at its threshold voltage (electric field of 5.26 kV/m), which is accompanied by a switching effect with a four-order resistance change at 293 K. This effect is attributed to the voltage-induced occurrence of strong field domains (electric double layers) at the cathode and depletion at the anode of the AKCF device. The proposed AKCF material presents considerable potential for applications in flexible/paper electronic devices such as high frequency power sources and switching effect devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.