Abstract

Abstract 2339Recent studies have highlighted the importance of the NR4A nuclear receptor family (Nur77 (Nr4a1), Nurr1 (Nr4a3), Nor1 (Nr4a2)) in the regulation of hematopoiesis. In murine models, NR4A gene deficiencies lead to aberrant proliferation of hematopoietic stem cells, and can lead to acute myeloid leukemia (AML). NR4A gene deficiencies also appear to be a feature in human AML cells. In order to better understand the pattern of expression and function of NR4A family members during normal hematopoiesis, we have developed a novel reporter mouse where the Nr4a1 promoter drives GFP expression (Nr4a1GFP). Our analyses reveal a hierarchy in Nr4a1 expression among bone marrow hematopoietic stem cells: long-term (LT) HSC's (CD150+CD48-LSKs) express the highest levels of Nr4a1GFP, more mature HSC's and multilineage progenitor populations (CD150+CD48+ and CD150-CD48+ LSKs) express intermediate levels, and common myeloid progenitors (CMLs, defined as Lin-c-kit+sca-1-) express no Nr4a1GFP. Interestingly, circulating LSK's in the spleen express Nr4a1GFP at higher levels than their bone marrow counterparts. In support of data suggesting that Nr4a family members regulate quiescence, we find that 1) all hematopoietic stem cells that remain in the bone marrow after acute (36h) 5-FU treatment express Nr4a1GFP, 2) Nr4a1GFP expression decreases among circulating splenic LSKs 48 hours after treatment with PolyI:C, and 3) Nr4a1GFP expression increases markedly when stem cells are cultured in vitro under conditions that promote quiescence. We will use this novel system to more directly address the role of Nr4a1 expression in hematopoiesis by evaluating the cell cycle status and defining the reconstitution potential of HSC's on the basis of their Nr4a1GFP expression. Disclosures:No relevant conflicts of interest to declare.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.