Abstract

In recent years, with the dramatic development in intelligent transportation systems (ITS), vehicle-vehicle (V2V) radio channel models have drawn much attention. With the analysis of the preceding statistical models of V2V channel, it is obvious that the critical works in developing statistical channel models focus on two aspects, the modeling of the time-variant properties and the modeling of the severe multipath fading. In this paper, we discuss an innovative method to model the fading dispersive channels that do not satisfy the assumption of wide-sense stationary uncorrelated scattering (WSSUS). And the Weibull distribution is integrated to mimic the severe multipath fading of V2V radio channel. Moreover, based on the tapped-delay like (TDL) model, the non-WSSUS channel impulse response (CIR) function has been formulated. There are several statistical properties characterized to evaluate the performance of the proposed model, such as, Power delay profile (PDP), Temporal autocorrelation function (ACF), Local scattering function (LSF) and Power spectrum density (PSD). The simulation results demonstrate that the proposed model has a good performance in the characterization of the non-WSSUS V2V radio channel. Hence, the channel model presented will be beneficial in future V2V communications systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.