Abstract

Osteogenesis imperfecta (OI) is a genetic disorder characterized by fragile bones. Most OI cases are caused by defects in type I collagen structure or synthesis. Mutations in collagen specific molecular chaperone Hsp47, specifically L78P and L326P, lead to OI, yet these mutants are not fully characterized. Here, we found that both Hsp47 mutants were structurally unstable and formed high molecular weight complexes. They were degraded by the ubiquitin-proteasome system, and the collagen-binding ability of the mutants was significantly lower than that of the wild type. Although the chemical chaperone 4-PBA partially restores the solubility of the Hsp47 OI mutants, collagen-binding activity of Hsp47 was not improved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.