Abstract

MRI is being used to characterize the composition of atherosclerotic plaques. However, the resolution achievable using surface radiofrequency coils is limited by the signal to noise ratio. We studied the utility of a new intravascular (IV) MRI probe for high-resolution in vivo imaging of atherosclerotic lesions. Balloon-injured Watanabe heritable hyperlipidemic rabbits served as the experimental model of atherosclerosis. The newly developed IV MRI probe is 1.3 mm in diameter and can be positioned over a guidewire. MRI was performed with both an external phased-array coil and the IV MR coil. MR observations were correlated with histopathology. After MRI, the animals were killed and analysis of agreement between MR and histopathology was performed. The IV MR coil allows aortic images to be obtained with 156x156 micro m(2) in-plane resolution versus 352x352 micro m(2) when used with the external phased-array coil. No significant motion artifacts were noted, despite the continuation of arterial blood flow during image acquisition around the IV probe. The different components of the atherosclerotic lesions (lipid core and fibrous cap) were easily identified. There was an excellent agreement between MRI with the IV coil and histopathology by simple linear regression for both the mean wall thickness (r=0.88, slope 0.82, P<0.0001) and vessel wall area (r=0.86, slope 1.08, P<0.0001). The new nonobstructive design for this intravascular coil provides great promise for additional work in high-resolution MRI characterization of atherosclerotic plaques in vivo. The ability to position the probe with a guidewire allows its placement under fluoroscopic or MRI guidance, whereas its size is compatible with human coronary arteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call