Abstract
This study proposes a novel nonlinear resilient trajectory control for a quadrotor unmanned aerial vehicle (UAV) using backstepping control and nonlinear disturbance observer. First, a nonlinear dynamic model for the quadrotor UAV that considers external disturbances from wind model uncertainties is developed. A nonlinear disturbance observer is then constructed separately from the controller to estimate the external disturbances and compensate for the negative effects of the disturbances. Based on the estimates from the given observer, a nominal nonlinear backstepping trajectory-tracking position controller is designed to stabilize the subsystems step by step until the ultimate control law is obtained. An extra term is added to the nominal controller to address the problem of actuator effectiveness loss and to ensure system resilience. The stability of the resilient controller is analyzed using Lyapunov stability theory. Simulation results are presented to demonstrate the effectiveness and robustness of the proposed nonlinear resilient controller.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.