Abstract

The modular multilevel converter (MMC) high-voltage direct current (HVDC) transmission technology is essential for overcoming the challenges of large-scale renewable energy integration. Line protection is critical for ensuring system safety. However, existing protection methods for MMC-HVDC transmission lines face difficulties in withstanding both high resistance and noise interference, frequently leading to failures in detecting internal high-resistance faults or triggering false operations due to noise. This paper first derives the theoretical expression of the line-mode voltage through analytical methods. By analyzing the second derivative of the line-mode voltage under different fault conditions, this paper constructs a criterion based on the ratio of the integrals of the positive and negative components of the second derivative of the line-mode voltage. This criterion enables effective fault discrimination by utilizing the characteristic differences in the second-derivative waveform. The proposed criterion allows for precise fault identification, requiring only a 0.5 ms time window to detect faults. Additionally, this criterion is highly resistant to transition resistance, remaining unaffected by resistances up to 500 Ω. Moreover, an entropy-based auxiliary criterion is introduced to prevent false operations caused by noise interference. Simulation results using PSCAD/EMTDC demonstrate that the proposed protection scheme can swiftly and reliably detect faults, with a detection time of 0.5 ms and robust performance against both high transition resistance and noise interference.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.