Abstract

A method for preparing a novel bixbyite non-selective coating for solar thermal conversion is described. The coating is formed by a thermal reaction between a titania sol–gel precursor with a copper manganese spinel to form a new material, Cu0.44Ti0.44Mn0.84Fe0.28O3, with a bixbyite structure. The effect of temperature and ratio between the two components on the formation of the bixbyite layer (deposited on Inconel by spray-coating) was studied. The absorptance of the films (AM 1.5; 335–2500 nm) with a thickness of 10±2 µm after annealing at 2 h at 650 °C and 750 °C was 97.4% and 94.7%, respectively. This synthesis represents a novel approach in which the final solar thermal coating is formed as a continuous and uniform layer which combines both the absorber and the ceramic binder. The developed material shows promising results for future applications as absorber in solar thermal energy conversion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.