Abstract

Community detection in networks is a very important area of research for revealing the structure and function of networks. Label propagation algorithm (LPA) has been widely used to detect communities in networks because it has the advantages of linear time complexity and is unnecessary to get prior information, such as objective function and the number of communities. However, LPA has the shortcomings of uncertainty and randomness in the label propagation process, which affects the accuracy and stability of the algorithm. In this paper, we propose a novel community detection algorithm, named NGLPA, in which labels are propagated by node gravitation defined by node importance and similarity between nodes. To select the label according to the gravitation between nodes can reduce the randomness of LPA and is consistent with reality. The proposed method is tested on several synthetic and real-world networks with comparative algorithms. The results show that NGLPA can significantly improve the quality of community detection and obtain accurate community structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.