Abstract

Hydrogen sulfide (H2S), as an important small molecule bioregulator, plays a key role in many physiological activities and signaling, and abnormal fluctuations in H2S concentration can lead to a variety of diseases. Therefore, it is of great significance to develop a near-infrared fluorescence probe to visualize fluctuations in H2S levels. This work is based on Sulfur-substituted dicyanomethylene-4H-chromene (DCM), A novel NIR fluorescent probe (E) -3 - (2 - (4 - (dicyanomethylene) -6-methyl-4H-Thiochromen-2-yl)vinyl-1-methylquinolin-1-ium (DMT) was synthesized successfully. Research has found that in weakly alkaline environments, the probe DMT reacts rapidly with H2S (only 10s), the fluorescence intensity at 684nm is enhanced by about 60 fold, the detection limit is as low as 0.1623 µM, the Stokes shift is large (94nm), and strong selectivity as well as anti-interference ability towards H2S. This will provide a new method for the rapid detection and further application of H2S.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.