Abstract

As one of the most significant parameters in cellular microenvironment, viscosity levels could be used to determine the metabolic process of bioactive substances within cells. Abnormal viscosity levels are closely associated with a series of diseases. Therefore, the design and synthesis of fluorescent probes that can monitor changes of intracellular viscosity in real-time is of great significance for the study of disease development process. Here, a new viscosity-recognized NIR fluorescence probe W1 based on quinoline-malonitrile is synthesized, and it is not susceptible to interference substances. Besides, AIE probe W1 shows fast response, excellent photostability, low cytotoxicity, good linear relationship between fluorescence intensity value and viscosity. Based on the above advantages, probe W1 is used to image the change of viscosity level in the cell model induced by nystatin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call