Abstract

Efficient electrocatalysts for the oxygen evolution reaction (OER) are critical for various energy conversion devices such as metal-air batteries, rechargeable fuel cell, and water splitting for hydrogen production. In this work, a novel non-precious-metal OER catalyst was prepared from the pyrolysis of a Ni-Schiff base complex with thiourea. The derived catalyst is composed of nickel oxide coupled with nickel sulfide loaded on nitrogen-doped carbon matrix (NiO-NiS/N-C), which manifested excellent OER electrocatalytic activity, and an onset potential of 1.54 V vs reversible hydrogen electrode was achieved in alkaline electrolyte. The high performance of as-obtained electrocatalyst was illustrated by fully dispersed active components of NiO coupled with NiS nanoparticles, as well as the strong interaction between NiS, NiO particles, and N-doped carbon substrate. Our findings supply an easier path to fabricate the active catalyst through one-step metal organic framework transformation way and are promising for use in energy conversion systems and also yield new impetus for exploring other non-noble metal catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call