Abstract
A novel network-based framework for the short-term scheduling of multi-purpose batch processes is presented. The novelty of the proposed approach lies in five key concepts. First, it is based on a new continuous-time representation that does not require tasks to start (end) exactly at a time point; thus reducing the number of time points needed to represent a solution. Second, processing units are modeled as being in different activity states to allow storage of input/output materials. Third, time variables for “idle” and “storage” periods of a unit are introduced to enable the matching between tasks and time points without big-M constraints. Fourth, material transfer variables are introduced to explicitly account for unit connectivity. Fifth, inventory variables for storage in processing units are incorporated to model non-simultaneous and partial material transfers. The proposed representation leads to MILP formulations which address limitations of existing scheduling methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.