Abstract

The development and validation of a multiscopic near-infrared fluorescence (NIRF) probe, cinnamoyl-F-(D)L-F-(D)L-F-PEG-cyanine7 (cFlFlF-PEG-Cy7), that targets formyl peptide receptor on neutrophils using a mice ear inflammation model is described. Acute inflammation was induced in mice by topical application of phorbol-12-myristate-13-acetate to left ears 24 hours before probe administration. Noninvasive NIRF imaging was longitudinally performed up to 24 hours following probe injection. The in vivo neutrophil-targeting specificity of the probe was characterized by a blocking study with preadministration of excess nonfluorescent peptide cFlFlF-PEG and by an imaging study with a scrambled peptide probe cLFFFL-PEG-Cy7. NIRF imaging of mice injected with cinnamoyl-L-F-F-F-L-PEG-cyanine7 (cFlFlF-PEG-Cy7) revealed that the fluorescence intensity for inflamed left ears was approximately fourfold higher than that of control right ears at 24 hours postinjection. In comparison, the ratios acquired with the scrambled probe and from the blocking study were 1.5- and 2-fold at 24 hours postinjection, respectively. Moreover, a microscopic immunohistologic study confirmed that the NIRF signal of cFlFlF-PEG-Cy7 was associated with activated neutrophils in the inflammatory tissue. With this probe, in vivo neutrophil chemotaxis could be correlatively imaged macroscopically in live animals and microscopically at tissue and cellular levels.

Highlights

  • The development and validation of a multiscopic near-infrared fluorescence (NIRF) probe, cinnamoyl-F-(D)L-F-(D)L-F-PEG-cyanine[7], that targets formyl peptide receptor on neutrophils using a mice ear inflammation model is described

  • We recently reported the synthesis of cinnamoyl-F-(D)L-F-(D)L-FPEG-cyanine[7] for noninvasive NIRF imaging of neutrophils in small animals.[14]

  • The in vivo neutrophil specificity of the probe was demonstrated by a blocking study and an imaging study with a scrambled peptide probe

Read more

Summary

Introduction

The development and validation of a multiscopic near-infrared fluorescence (NIRF) probe, cinnamoyl-F-(D)L-F-(D)L-F-PEG-cyanine[7] (cFlFlF-PEG-Cy7), that targets formyl peptide receptor on neutrophils using a mice ear inflammation model is described. A microscopic immunohistologic study confirmed that the NIRF signal of cFlFlF-PEG-Cy7 was associated with activated neutrophils in the inflammatory tissue With this probe, in vivo neutrophil chemotaxis could be correlatively imaged macroscopically in live animals and microscopically at tissue and cellular levels. We recently reported the synthesis of cinnamoyl-F-(D)L-F-(D)L-FPEG-cyanine[7] (cFlFlF-PEG-Cy7) for noninvasive NIRF imaging of neutrophils in small animals.[14] In this article, validation of this probe in vitro and in vivo is presented and fluorescence images of live animals and microscopic tissue slices are correlated. The neutrophil-binding property of cFlFlF-PEG-Cy7 was verified by fluorescence microscopy

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call