Abstract

The extensive explorations of potential cathode materials are prominently critical for the rapid development of high performance solid oxide fuel cells (SOFCs). Herein, we develop a novel Nb and Cu co-doped SrCoO3-δ (SCNC) cathode base on solid state reaction, which exhibits decent compatibility with gadolinium doped cerium oxide (GDC) electrolyte. The SCNC is successfully stabilized with cubic structure at room temperature when incorporating of small amount of high valence Nb5+. Meanwhile, the oxygen vacancy concentration of SCNC is efficiently improved with the addition of Cu. The Nb and Cu co-doping also substantially promotes the electronic conductivity, achieving 550 S cm−1 for the optical doped SrCo0.85Nb0.05Cu0.10O3-δ (SCNC10) at 400 °C. In addition, the polarization of SCNC is remarkably reduced, reaching as low as 0.021 Ω cm2 for SCNC10 at 700 °C. The activation energy for reaction is also significantly lowered to 0.78 eV. The reaction order m is deduced to be about 0.30, implying that the rate determination step for SCNC10 is the charge transfer reaction. The peak power density of the single cell reaches 780 mW cm−2 at 800 °C. All these outstanding performances demonstrate that SCNC is a promising cathode for SOFCs when operating at intermediate temperature (IT).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call