Abstract

Constraint optimization consists of looking for an optimal solution maximizing a given objective function while meeting a set of constraints. In this study, we propose a new algorithm based on mushroom reproduction for solving constraint optimization problems. Our algorithm, that we call Mushroom Reproduction Optimization (MRO), is inspired by the natural reproduction and growth mechanisms of mushrooms. This process includes the discovery of rich areas with good living conditions allowing spores to grow and develop their own colonies. Given that constraint optimization problems often suffer from a high-time computation cost, we thoroughly assess MRO performance on well-known constrained engineering and real-world problems. The experimental results confirm the high performance of MRO, comparing to other known metaheursitcs, in dealing with complex optimization problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.