Abstract
Cooling is very important for the safe operation of an electron cyclotron resonance ion source (ECRIS), especially when the window current density is very high (up to 11 A/mm2). We proposed an innovative cooling method using evaporative cooling technology. A demonstration prototype was designed, built and tested. The on-site test results showed that the temperature of the solenoids and permanent magnets maintains well in the normal operational range of 14–18 GHz. A simple computational model was developed to predict the characteristics of the two-phase flow. The predicted temperatures agreed well with the on-site test data within 2 K. We also proposed useful design criteria. The successful operation of the system indicates the potential for broad application of evaporative cooling technology in situations in which the power intensity is very high.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.