Abstract

Introduction: Alternaria spp. and Candida spp. are the main fungal pathogen of indoor environment like house, office, classroom, etc. These may cause various diseases and infections like systemic infections, or chronic asthma in immunocompromised individuals through secretion of various toxic substances. Chemical-based commercially available room fresheners used to control the fungal load of indoor environment are not beneficial to human health. Objective: was to provide viable alternative in the form of nanoparticle-based approach for the management of air-borne fungi. Methodology: The present study primarily focuses on the isolation, microscopic and biochemical identification of indoor fungi; Azadirachta indica-mediated sulphur nanoparticles (SNPs) synthesis, their detection and characterization; and in vitro assessment of SNPs against isolated fungi present in indoor environment. Result: The isolated fungi were identified as Alternaria spp and Candida spp. The SNPs showed absorbance maxima at 291 nm. NTA analysis showed average size of 188.4 nm, and zeta potential of -4.94 mV which represented synthesis of stable SNPs. XRD pattern confirmed the face centered cubic, crystalline nature of SNPs. FTIR spectrum depicted the presence of polyhydroxyl, nitrile, keto, aromatic and carboxylic compounds which stabilized the SNPs. The antifungal assays demonstrated the significant activity of the formulated SNPs and eucalyptus oil infused air freshener. Conclusion: It can be concluded that A. indica-mediated SNPs can be applied in the formulation and manufacture of an ecofriendly air freshener for the management of indoor fungal pathogens like Alternaria spp. and Candida spp.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call