Abstract

Thrombin is a crucial multifunctional enzyme involved in many physiological and pathological processes. Its detection is of great importance. In this work, a novel bio-dots nanosensor for detection of thrombin with colorimetric, fluorometric and light-scattering signals is developed. This nanosensor is composed of thrombin-binding aptamer bio-dots (TBA-dots) and gold nanoparticles (AuNPs), where TBA-dots serve as fluorometric reporter and AuNPs function as multiple roles as colorimetric reporter, light scattering reporter and fluorescence quencher. TBA-dots retain inherent structures of aptamer to specifically interact with thrombin and simultaneously induce the aggregation of AuNPs. The mechanism of the sensing system is based on distance-dependent aggregation of AuNPs and fluorescence resonance energy transfer (FRET). The nanosensor needs no further surface functionalization required for the as-prepared bio-dots and AuNPs, which provides a sensitive method for the selective detection of thrombin with a detection limit as low as 0.59nM. In addition, it provides a brand new perspective for bio-dots and its potential use in bioanalysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call