Abstract

An anticancer agent derived from a natural product, parthenolide (PN), was studied to formulate PN into poly(lactic-co-glycolic acid) (PLGA). Polydopamine (PDA) was employed to modify the surface of PN-PLGA. Following characterization, the PN-PLGA-PDA was evaluated for its in vitro release, cytotoxicity, and ability to induce apoptosis using flow cytometry and real-time quantitative PCR. According to the present study, PN-PLGA-PDA had a size of 195.5nm which is acceptable for efficient enhanced permeation and retention (EPR) performance. The SEM results confirmed the size and spherical shape of the nanoparticles. The percentage of encapsulation efficiency was 96.9%. The zeta potential of PN-PLGA-PDA was - 31.8mV which was suitable for its stability. FTIR spectra of the PN-PLGA-PDA indicated the chemical stability of the PN due to intermolecular hydrogen bonds between polymer and drug. The release of PN from PN-PLGA-PDA in PBS (pH 7.4) was only 20% during the first 48h and less than 40% during 144h. PN-PLGA-PDA exhibited anticancer properties in a dose-dependent manner that was more cytotoxic against cancer cells than normal cells. Moreover, real-time qPCR results indicated that the formulation activated apoptosis genes to exert its cytotoxic effect and activate the NF-kB pathway. Based on our findings, PN-PLGA-PDA could serve as a potential treatment for cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call