Abstract

The high contact thermal resistance of the interface between graphene films (GF) and substrates has become one of the key obstacles for the application of GF in electronic devices. A novel nano-Ag paste with nano-Ag particles modified reduced graphene oxide (Ag-rGO) was introduced to enhance the heat transport via the interface of GF and substrate. The influence of the content of Ag-rGO on shear strength and electrical resistivity of sintered Ag structure was investigated. The maximum shear strength and the minimum electrical resistivity were got for sintered Ag structure with 0.5 wt.% Ag-rGO. Reduced contact thermal resistance of GF and Cu substrate (GF/Cu) laminated structure was gained by using sintered Ag structure with Ag-rGO as interconnect materials. The minimum value of the thermal resistance of 2.02 ± 0.26 mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> ·K/W was obtained for GF/Cu laminated structure connected by sintered Ag structure with 1 wt.% Ag-rGO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call