Abstract
Micro-nano-scale mechanical properties are vital for engineering and biological materials. The elastic modulus is generally measured by processing the force-indentation curves obtained by atomic force microscopy (AFM). However, the measurement precision is largely affected by tip shape, tip wear, sample morphology, and the contact model. In such research, it has been found that the radius of the sharp tip increases due to wear during contact scanning, affecting elastic modulus calculations. For flat-ended tips, it is difficult to identify the contact condition, leading to inaccurate results. Our research team has invented a nano-spherical tip, obtained by implanting focused helium ions into a silicon microcantilever, causing it to expand into a silicon nanosphere. This nano-spherical tip has the advantages of sub-micro size and a smooth spherical surface. Comparative tests of the elastic modulus measurement were conducted on polytetrafluoroethylene (PTFE) and polypropylene (PP) using these three tips. Overall, the experimental results show that our nano-spherical tip with a consistent tip radius, symmetrical geometric shape, and resistance to wear and contamination can improve precision in elastic modulus measurements of polymer materials.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.