Abstract
Axon degeneration represents a pathological feature of many neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease where axons die before the neuronal soma, and axonopathies, such as Charcot-Marie-Tooth disease and hereditary spastic paraplegia. Over the last two decades, it has slowly emerged that a central signaling pathway forms the basis of this process in many circumstances. This is an axonal NAD-related signaling mechanism mainly regulated by the two key proteins with opposing roles: the NAD-synthesizing enzyme NMNAT2, and SARM1, a protein with NADase and related activities. The crosstalk between the axon survival factor NMNAT2 and pro-degenerative factor SARM1 has been extensively characterized and plays an essential role in maintaining the axon integrity. This pathway can be activated in necroptosis and in genetic, toxic or metabolic disorders, physical injury and neuroinflammation, all leading to axon pathology. SARM1 is also known to be involved in regulating innate immunity, potentially linking axon degeneration to the response to pathogens and intercellular signaling. Understanding this NAD-related signaling mechanism enhances our understanding of the process of axon degeneration and enables a path to the development of drugs for a wide range of neurodegenerative diseases.
Highlights
Neurons are the longest cells in the body; this structure lends itself to their function of transmitting signals around the body to react to changing stimuli, but their length leaves them vulnerable to injury and other stresses
Carcinoscorpius rotundicauda, the SARM1 orthologue is shown to downregulate TRIF-dependent NF-κB activation during the infection with Pseudomonas aeruginosa (Belinda et al, 2008). These results demonstrate the functional conservation of SARM1 as a negative regulator in TRIFdependent Toll-like receptors (TLRs) signaling
Axons are eliminated through programmed axon degeneration, a subcellular self-destruction program that can be activated in necroptosis, genetic, toxic metabolic disorders, physical injury, in addition to neuroinflammation
Summary
Neurons are the longest cells in the body; this structure lends itself to their function of transmitting signals around the body to react to changing stimuli, but their length leaves them vulnerable to injury and other stresses. Upon injury and consequent NMNAT2 loss, this auto-inhibition is relieved, permitting the C-terminal TIR domains to self-associate to hydrolyze NAD into Nam, and either ADPR or cADPR, along with other activities, and axons degenerate (Essuman et al, 2017; Horsefield et al, 2019).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.