Abstract

Aim: This study aimed to investigate the molecular testing of congenital hearing loss by using next generation sequencing technology. Pendred syndrome (PS) is described by severe bilateral sensorineural hearing loss with goiter. The mutations of SCL26A4 gene can cause PS. Material and Method: We evaluated the feasibility of target-enrichment and massive parallel sequencing technologies to interrogate all mutations of genes (GJB2, GJB3, GJB6, SLC26A4 and for the mitochondrial mutation A1555G) implicated in NSHL, we performed molecular analyses of 14 NSHL families and patients by using Miseq system (Illumina Inc.). Next-Generation sequencing (NGS) technologies provide specificity, sensitivity and reproducibility at levels sufficient to perform genetic diagnosis of hearing loss. Results: We found two different mutations in SCL26A4 gene such as F354S and I588T in both consanguineous families as diagnosed with Pendred syndrome and we reported a novel mutation in SCL26A4 gene. We found no mutation in GJB2, GJB3, GJB6 gene and A1555G mtDNA in this study. Conclusion: These results highlight the benefits using targeted gene panels with NGS technologies in the molecular analysis of nonsyndromic, congenital hearing loss patients. This study assessed the frequency of deafness genes in Turkish children with congenital hearing loss who had been treated with cochlear implantation, and we found a novel mutation (I588T) in SLC26A4 gene. Key Words: Pendred syndrome, Congenital Hearing Loss, Next-Generation sequencing

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call