Abstract
Purpose: Fabry disease is an X-linked genetic disorder caused by the mutations of α-galactosidase A (GLA, MIM 300644) gene presenting with various clinical symptoms including small-fiber peripheral neuropathy and limb burning pain. Here, we reported a Chinese pedigree with the initial diagnosis of primary erythromelalgia in an autosomal dominant (AD)-inherited pattern. Methods: Mutation analysis of SCN9A and GLA genes by direct sequencing and functional analysis of a novel mutation of GLA in cells were performed. Results: Our data did not show any pathological mutations in SCN9A gene; however, a novel missense mutation c.139T>C (p.W47R) of GLA was identified in a male proband as well as two female carriers in this family. Enzyme assay of α-galactosidase A activity showed deficient enzyme activity in male patients and female carriers, further confirming the diagnosis of Fabry disease. Finally, a functional analysis indicated that the replacement of the 47th amino acid tryptophan (W47) with arginine (W47R) or glycine (W47G) led to reduced activity of α-galactosidase A in 293T cells. Therefore, these findings demonstrated that the novel mutation p.W47R of GLA is the cause of Fabry disease. Conclusions: Because Fabry disease and primary erythromelalgia share similar symptoms, it is a good strategy for clinical physicians to perform genetic mutation screenings on both SCN9A and GLA genes in those patients with limb burning pain but without a clear inheritant pattern.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.