Abstract

Alterations in nuclear factor kappa B (NF-kappaB) essential modulator (NEMO; HUGO-approved symbol IKBKG) underlie most cases of ectodermal dysplasia with immune deficiency (EDI), a human disorder characterized by anhidrosis with diminished immunity. EDI has also been associated with a single heterozygous mutation at position Ser32 of the NF-kappaB inhibitor IkappaBalpha, one of two phosphorylation sites that are essential for targeting IkappaBalpha for proteasomal degradation and hence for activation of NF-kappaB. We report a novel heterozygous nonsense mutation in the IKBA (HUGO-approved symbol, NFKBIA) gene of a 1-year-old male child with EDI that introduces a premature termination codon at position Glu14. An in-frame methionine downstream of the nonsense mutation allows for reinitiation of translation. The resulting N-terminally truncated protein lacks both serine phosphorylation sites and inhibits NF-kappaB signaling by functioning as a dominant negative on NF-kappaB activity in lymphocytes and monocytes. These findings support the scanning model for translation initiation in eukaryotes and confirm the critical role of the NF-kappaB in the human immune response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.