Abstract

A novel coronavirus discovered in late 2019 (COVID-19) quickly spread into a global epidemic and, thankfully, was brought under control by 2022. Because of the virus’s unknown mutations and the vaccine’s waning potency, forecasting is still essential for resurgence prevention and medical resource management. Computational efficiency and long-term accuracy are two bottlenecks for national-level forecasting. This study develops a novel multivariate time series forecasting model, the densely connected highly flexible dendritic neuron model (DFDNM) to predict daily and weekly positive COVID-19 cases. DFDNM’s high flexibility mechanism improves its capacity to deal with nonlinear challenges. The dense introduction of shortcut connections alleviates the vanishing and exploding gradient problems, encourages feature reuse, and improves feature extraction. To deal with the rapidly growing parameters, an improved variation of the adaptive moment estimation (AdamW) algorithm is employed as the learning algorithm for the DFDNM because of its strong optimization ability. The experimental results and statistical analysis conducted across three Japanese prefectures confirm the efficacy and feasibility of the DFDNM while outperforming various state-of-the-art machine learning models. To the best of our knowledge, the proposed DFDNM is the first to restructure the dendritic neuron model’s neural architecture, demonstrating promising use in multivariate time series prediction. Because of its optimal performance, the DFDNM may serve as an important reference for national and regional government decision-makers aiming to optimize pandemic prevention and medical resource management. We also verify that DFDMN is efficiently applicable not only to COVID-19 transmission prediction, but also to more general multivariate prediction tasks. It leads us to believe that it might be applied as a promising prediction model in other fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call