Abstract

Real-time prediction of remaining useful life (RUL) is an essential feature of a robust battery management system (BMS). In this work, a novel method for real-time RUL estimation of Li ion batteries is proposed that integrates classification and regression attributes of Support Vector (SV) based machine learning technique. Cycling data of Li-ion batteries under different operating conditions are analyzed, and the critical features are extracted from the voltage and temperature profiles. The classification and regression models for RUL are built based on the critical features using Support Vector Machine (SVM). The classification model provides a gross estimation, and the Support Vector Regression (SVR) is used to predict the accurate RUL if the battery is close to the end of life (EOL). By the critical feature extraction and the multistage approach, accurate RUL prediction of multiple batteries is accomplished simultaneously, making the proposed method generic in nature. In addition to accuracy, the multistage approach results in faster computations, and hence a trained model can potentially be used for real-time onboard RUL estimation for electric vehicle battery packs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.