Abstract

Abstract In this study, a new multiscale intensity (MSI) metric for evaluating tropical cyclone (TC) intensity forecasts is presented. The metric consists of the resolvable and observable, low-wavenumber intensity represented by the sum of amplitudes of azimuthal wavenumbers 0 and 1 for wind speed within the TC vortex at the radius of maximum wind and a stochastic residual, all determined at 10-m elevation. The residual wind speed is defined as the difference between an estimate of maximum speed and the low-wavenumber intensity. The MSI metric is compared to the standard metric that includes only the maximum speed. Using stepped-frequency microwave radiometer wind speed observations from TC aircraft reconnaissance to estimate the low-wavenumber intensity and the National Hurricane Center’s best-track (BT) intensity for the maximum wind speed estimate, it is shown that the residual intensity is well represented as a stochastic quantity with small mean, standard deviation, and absolute norm values that are within the expected uncertainty of the BT estimates. The result strongly suggests that the practical predictability of TC intensity is determined by the observable and resolvable low-wavenumber intensity within the vortex. Verification of a set of high-resolution numerical forecasts using the MSI metric demonstrates that this metric provides more informative and more realistic estimates of the intensity forecast errors. It is also shown that the maximum speed metric allows for error compensation between the low-wavenumber and residual intensities, which could lead to forecast skill overestimation and inaccurate assessment of the impact of forecast system change on the skill.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.