Abstract

AbstractPrinciples and advantages of a new concept based on the ab initio aided strain gradient elasticity theory are shown in comparison with the classical Barenblatt cohesive model. The method is applied to the theoretical prediction of the critical energy release rate and the crack tip opening displacement at the crack instability in nanopanels made of germanium and molybdenum crystals. The necessary length scale parameter l1 is determined for germanium and molybdenum by the best gradient elasticity fits of ab initio computed screw dislocation displacements and phonon dispersions. Values of ab initio computed critical energy release rates and crack opening profiles revealed that the length l1 is related to inflexion points of profiles. A novel ab initio method in combination with continuum mechanics was successfully tested to replace molecular statics dependent of availability of interatomic potentials. The asymptotic strain gradient elasticity solution for displacement components near the crack tip in materials with cubic lattice was also derived.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.