Abstract
In this paper, we propose a novel monitoring strategy for a wireless sensor networks (WSNs)-based water pipeline network. Our strategy uses a multi-pronged approach to reduce energy consumption based on the use of two types of vibration sensors and pressure sensors, all having different energy levels, and a hierarchical adaptive sampling mechanism to determine the sampling frequency. The sampling rate of the sensors is adjusted according to the bandwidth of the vibration signal being monitored by using a wavelet-based adaptive thresholding scheme that calculates the new sampling frequency for the following cycle. In this multimodal sensing scheme, the duty-cycling approach is used for all sensors to reduce the sampling instances, such that the high-energy, high-precision (HE-HP) vibration sensors have low duty cycles, and the low-energy, low-precision (LE-LP) vibration sensors have high duty cycles. The low duty-cycling (HE-HP) vibration sensor adjusts the sampling frequency of the high duty-cycling (LE-LP) vibration sensor. The simulated test bed considered here consists of a water pipeline network which uses pressure and vibration sensors, with the latter having different energy consumptions and precision levels, at various locations in the network. This is all the more useful for energy conservation for extended monitoring. It is shown that by using the novel features of our proposed scheme, a significant reduction in energy consumption is achieved and the leak is effectively detected by the sensor node that is closest to it. Finally, both the total energy consumed by monitoring as well as the time to detect the leak by a WSN node are computed, and show the superiority of our proposed hierarchical adaptive sampling algorithm over a non-adaptive sampling approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.