Abstract

Multiple work shifts are commonly utilized in construction projects to meet project requirements. Nevertheless, evening and night shifts raise the risk of adverse events and thus must be used to the minimum extent feasible. Tradeoff optimization among project duration (time), project cost, and the utilization of evening and night work shifts while maintaining with all job logic and resource availability constraints is necessary to enhance overall construction project success. In this study, a novel approach called “Multiple Objective Symbiotic Organisms Search” (MOSOS) to solve multiple work shifts problem is introduced. The MOSOS algorithm is new meta-heuristic based multi-objective optimization techniques inspired by the symbiotic interaction strategies that organisms use to survive in the ecosystem. A numerical case study of construction projects were studied and the performance of MOSOS is evaluated in comparison with other widely used algorithms which includes non-dominated sorting genetic algorithm II (NSGA-II), the multiple objective particle swarm optimization (MOPSO), the multiple objective differential evolution (MODE), and the multiple objective artificial bee colony (MOABC). The numerical results demonstrate MOSOS approach is a powerful search and optimization technique in finding optimization of work shift schedules that is it can assist project managers in selecting appropriate plan for project.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.