Abstract

Cross-docking is a material handling and distribution technique in which products are transferred directly from the receiving dock to the shipping dock, reducing the need for a warehouse or distribution center. This process minimizes the storage and order-picking functions in a warehouse. In this paper, we consider cross-docking in a supply chain and propose a multi-objective mathematical model for minimizing the make-span, transportation cost and the number of truck trips in the supply chain. The proposed model allows a truck to travel from a supplier to the cross-dock facility and from the supplier directly to the customers. We propose two meta-heuristic algorithms, the non-dominated sorting genetic algorithm (NSGA-II) and the multi-objective particle swarm optimization (MOPSO), to solve the multi-objective mathematical model. We demonstrate the applicability of the proposed method and exhibit the efficacy of the procedure with a numerical example. The numerical results show the relative superiority of the NSGA-II method over the MOPSO method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.