Abstract

Multi‐mode process monitoring is a key issue often raised in industrial process control. Most multivariate statistical process monitoring strategies, such as principal component analysis (PCA) and partial least squares, make an essential assumption that the collected data follow a unimodal or Gaussian distribution. However, owing to the complexity and the multi‐mode feature of industrial processes, the collected data usually follow different distributions. This paper proposes a novel multi‐mode data processing method called weighted k neighbourhood standardisation (WKNS) to address the multi‐mode data problem. This method can transform multi‐mode data into an approximately unimodal or Gaussian distribution. The results of theoretical analysis and discussion suggest that the WKNS strategy is more suitable for multi‐mode data normalisation than the z‐score method is. Furthermore, a new fault detection approach called WKNS‐PCA is developed and applied to detect process outliers. This method does not require process knowledge and multi‐mode modelling; only a single model is required for multi‐mode process monitoring. The proposed method is tested on a numerical example and the Tennessee Eastman process. Finally, the results demonstrate that the proposed data preprocessing and process monitoring methods are particularly suitable and effective in multi‐mode data normalisation and industrial process fault detection. Copyright © 2014 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call