Abstract

AbstractMultifunctional separation membrane is usually realized by multi‐component collaborative construction, which makes the membrane preparation method complicated and uncontrollable. Herein, a novel multifunctional photocatalytic separation membrane is prepared by vacuum self‐assembly of single seaweed‐like g‐C3N4 photocatalyst. The seaweed‐like g‐C3N4 gives membrane certain roughness, large specific surface area, excellent hydrophilicity and abundant transport channels. Through a systematic study, the membrane exhibits excellent separation of five oil‐in‐water emulsions with a maximum flux of 3114.0 ± 113.0 L m−2 h−1 bar−1 for 1, 2‐dichloroethane‐in‐water (Dc/W) emulsion and a maximum efficiency of 97.4 ± 0.1% for chloroform‐in‐water (C/W) emulsion. In addition, the seaweed‐like g‐C3N4 with large specific surface area and narrow bandgap render excellent visible light absorption characteristics and accelerate e−‐h+ pairs transport rate, giving the membrane excellent photocatalytic degradation and antibacterial properties. The membrane shows good degradation for eight different pollutants, among which the degradation effect for rhodamine B (RhB), methylene blue (MB), and crystal violet (CV) were ≈100%. The antibacterial efficiency against E. coli and S. aureus is also close to 100%. After 35 consecutive separations of C/W emulsion and 10 consecutive degradations of RhB, the membrane still maintains excellent separation performance. This long‐lasting multifunctional separation membrane exhibits broad application prospects in complex wastewater purification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.