Abstract

Abstract The multicore fiber amplifier, as a key component in spatial division multiplexing (SDM) communication systems, presents higher technical difficulty compared to traditional multi-channel single core fiber amplifiers, which has sparked widespread attention. To achieve balance, efficiency, miniaturization, and cost-effectiveness in the performance of multi-core optical fiber amplifiers, we propose an innovative triple cladding 13-core Er/Yb co-doped microstructured fiber (13CEYDMOF). The proposed fiber features an outer cladding with peanut-shaped air holes, which enables uniform excitation of the 13 cores using a single multimode laser pump source within the inner cladding. This approach also prevents damage or aging of the fiber’s outer coating due to the pump laser. Furthermore, the design of Peanut-Shaped Air Holes effectively increases the numerical aperture (NA) of the inner cladding while reducing the outer diameter of the fiber, enhancing the fiber’s mechanical flexibility. To address the coupling difficulties caused by air holes, we bi-directionally pump the 13CEYDMOFA by utilizing a combined technique of the side winding and end pumping. The experimental results show that the 13CEYDMOFA can achieve an average gain of 23.8 dB, a noise figure (NF) of ∼4.6 dB, and an inter-core gain difference of less than 2 dB in the wavelength range of 1529–1565 nm. The in-line amplified transmission experiment demonstrates that the 13CEYDMOFA is well suited for the 13 spatial channels transmission. To the best of our knowledge, this is the first time to realize high performance telecommunication band amplification in a multicore microstructure fiber.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.