Abstract

A novel multiaxial three-dimensional woven preform and the weaving technique have been developed in this study. The preform exhibits remarkable designs, which is formed by multiple layers of different yarn sets, including bias (+bias/−bias), warp, and filling, and all layers are locked by Z-yarns These layers are arranged in a rectangular fashion and the layer number and the position of bias layer can be determined by the end-use requirements. A weaving process and machine are proposed to produce the preform. The weaving technique enables the insertion of many warp layers between two opposite bias layers. The microstructure of the preform was also studied. Microscopic evidence of the microstructure reveals that the cross-sections of Z-yarn are variable along its central axis due to the lateral compression forces of adjacent yarns from different directions. On the basis of microscopic observation, a unit cell geometry model of multiaxial three-dimensional woven preform is established, and a good agreement has been obtained between the theoretical and experimental values of the structural parameters of woven composite samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.