Abstract
In this paper, we propose a multi-task learning (MTL) network based on the label-level fusion of metadata and hand-crafted features by unsupervised clustering to generate new clustering labels as an optimization goal. We propose a MTL module (MTLM) that incorporates an attention mechanism to enable the model to learn more integrated, variable information. We propose a dynamic strategy to adjust the loss weights of different tasks, and trade off the contributions of multiple branches. Instead of feature-level fusion, we propose label-level fusion and combine the results of our proposed MTLM with the results of the image classification network to achieve better lesion prediction on multiple dermatological datasets. We verify the effectiveness of the proposed model by quantitative and qualitative measures. The MTL network using multi-modal clues and label-level fusion can yield the significant performance improvement for skin lesion classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.