Abstract

ABSTRACT To improve the fuel cell durability of the hydrogen Electric Multiple Units, this paper proposes a novel multi-stack fuel cell hybrid system energy management strategy in consideration of fuel cell degradation. The top layer of the method distributes the power of fuel cells and lithium batteries reasonably according to the Equivalent Consumption Minimization Strategy, and adjusts the fuel cell power through the feedback power regulation module. The bottom layer distributes the power of different stacks according to the degradation degree. The proposed layering method improves the durability of fuel cells by reducing the fuel cell degradation degree. The hardware-in-the-loop (HIL) experiments results show that, compared with the traditional equivalent hydrogen consumption minimum energy management strategy, the proposed method is effective in lowering the degradation degree and operating pressure of the fuel cell by 25.77% and 35.73% respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.