Abstract

Fluctuation in a fuel cell’s output power affects its service life. This paper aims to explore the relationship between power output fluctuation and energy consumption and the cost of the fuel cell system. Hence, based on the actual driving information of vehicles, a novel multi-objective energy management strategy (EMS) for fuel cell buses (FCBs) that quantifies fuel cell life as operating cost is proposed. The actual driving data of FCBs on bus line 727 in Zhengzhou, China, were collected. Based on this, considering the degradation factors of the fuel cell and power battery hybrid energy system, a multi-objective cost framework was established to quantify the life degradation as consumption cost. Furthermore, the influence of different power change limits on the performance of the EMS was analysed based on real-world driving data and the typical Chinese city bus driving cycle, respectively. The simulation results show that the degradation cost of the fuel cell can be effectively reduced when the power change limit is 1 kW, and the simulation results obtained using real-world driving data are very different from those obtained using typical city bus driving cycles. This study provides a reference for the application of a vehicle energy management strategy in real-world scenarios as well as highlights its significance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.