Abstract

The successful use of allografts in reconstructive orthopedic surgery, including revision total hip arthroplasty (THA), has been outlined repeatedly. Nonetheless, as previous studies were primarily based on clinical follow-ups, we aimed to create an algorithm that accurately determines the extent of allograft incorporation in the acetabulum and femur using a suite of high-resolution imaging techniques. This study is based on a large patient database including > 4,500 patient data with previous revision THA and simultaneous use of allografts. While the database was continuously matched with the deceased individuals at the local forensic medicine department, complete hips were retrieved in case of a positive match. A positive match was achieved for n = 46 hips at a mean follow-up of 11.8 ± 5.1 years. Comprehensive imaging included contact radiography, high-resolution computed tomography (HR-pQCT), undecalcified histology of ground sections and quantitative backscattered electron imaging (qBEI). We here define a histomorphometric toolkit of parameters to precisely characterize the incorporation of structural (bulk) and morselized (chip) allografts in the acetabulum (n = 38) and femur (n = 8), including the defect area and interface length, microstructural and cellular bone turnover parameters as well as overlap and fibrosis thickness. This collection of samples, through its unique study design and precise definition of incorporation parameters, will provide the scientific community with a valuable source for further in-depth investigation of allograft incorporation and, beyond that, the regenerative potential of this osteoconductive scaffold.

Highlights

  • The successful use of allografts in reconstructive orthopedic surgery, including revision total hip arthroplasty (THA), has been outlined repeatedly

  • Thirty-eight of 46 (82.6%) allograft specimens were obtained from the acetabulum, while the remaining 8/46 (17.4%) were allografts in the femur (Fig. 3B)

  • The defect area determined in the ground sections was significantly larger in the specimens with previous use of acetabular structural allografts compared to acetabular chip allografts (p = 0.012) and femoral allografts (p = 0.0007), while no differences between acetabular chip allografts and femoral allografts were observed (Fig. 3D)

Read more

Summary

Introduction

The successful use of allografts in reconstructive orthopedic surgery, including revision total hip arthroplasty (THA), has been outlined repeatedly. We here define a histomorphometric toolkit of parameters to precisely characterize the incorporation of structural (bulk) and morselized (chip) allografts in the acetabulum (n = 38) and femur (n = 8), including the defect area and interface length, microstructural and cellular bone turnover parameters as well as overlap and fibrosis thickness. This collection of samples, through its unique study design and precise definition of incorporation parameters, will provide the scientific community with a valuable source for further in-depth investigation of allograft incorporation and, beyond that, the regenerative potential of this osteoconductive scaffold. We are able to assess different factors that may contribute to allograft incorporation and to compare the histological incorporation of structural allografts and allograft chips

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call