Abstract

This paper presents a novel metal-oxide-nitride-oxide-silicon (MONOS)-type nonvolatile memory structure using hafnium oxide (HfO/sub 2/) as tunneling and blocking layer and tantalum pentoxide (Ta/sub 2/O/sub 5/) as the charge trapping layer. The superiorities of such devices to traditional SiO/sub 2/-Si/sub 3/N/sub 4/-SiO/sub 2/ stack devices in obtaining a better tradeoff between faster programming and better retention are illustrated based on a band engineering analysis. The experimental results demonstrate that the fabricated devices can be programmed as fast as 1 /spl mu/s and erased from 10 ns at an 8-V gate bias. The retention decay rate of this device is improved by a factor more than three as compared to the conventional MONOS/SONOS type devices. Excellent endurance and read disturb performance are also demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.