Abstract

Several β-lactam derivatives upregulate astrocytic glutamate transporter type 1expression and are known to improve measures in models of mood and alcohol use disorders (AUD) through normalizing glutamatergic states. However, long-term, and high doses of β-lactams may cause adverse side effects for treating mood disorders and AUD. Studies suggest that MC-100093, a novel β-lactam lacking antimicrobial activity, rescues GLT1 expression. Thus, we sought to investigate whether MC-100093 improves affective behaviors and reduces voluntary ethanol drinking. We intraperitoneally administered MC-100093 (50 mg/kg) or vehicle once per day to C57BL/6J male and female mice (8–10 weeks old) over 6 days. We employed the open field test and the elevated plus maze to examine the effect of MC-100093 on anxiety-like behaviors. We assayed MC-100093's effects on depressive-like behaviors using the tail suspension and forced swim tests. Next, utilizing a separate cohort of male and female C57BL6 mice, we assessed the effects MC100093 treatment on voluntary ethanol drinking utilizing the 2-bottle choice continuous access drinking paradigm. After screening and selecting high-drinking mice, we systematically administered MC-100093 (50 mg/kg) or vehicle to the high-drinking mice over 6 days. Overall, we found that MC-100093 treatment resulted in sex-specific pharmacological effects with female mice displaying reduced innate depressive-like behaviors during the tail suspension and force swim testing juxtaposed with male treated mice who displayed no changes in tail suspension and a paradoxical increased depressive-like behavior during the forced swim testing. Additionally, we found that MC100093 treatment reduced female preference for 10% EtOH during the 2-bottle choice continuous access drinking with no effects of MC100093 treatment detected in male mice. Overall, this data suggests sex-specific regulation of innate depressive-like behavior and voluntary EtOH drinking by MC100093 treatment. Western blot analysis of the medial prefrontal cortex and hippocampus revealed no changes in male or female GLT1 protein abundance relative to GAPDH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.