Abstract

Knowledge of the local groundwave-propagation characteristics is essential in wireless systems. Although Maxwell's equations establish the theoretical background, only a limited number of highly idealized groundwave-propagation problems have mathematically exact and/or approximate solutions. Therefore, semi-analytical/numerical and pure numerical simulation methods are almost the only way to handle realistic groundwave-propagation problems. To a certain extent, numerical simulators should be capable of taking non-flat, penetrable terrain and inhomogeneous atmospheric effects into account. Unfortunately, a generally applicable simulator has not yet appeared; there are many methods that have been developed under different assumptions and approximations, valid in different parameter regimes. It is therefore a challenge to apply these methods to the same physical problems, to do comparisons, and to evaluate numerical results. With all these factors in mind, a new MATLAB-based package GrMoMPE is introduced. It is first validated and calibrated, and then applied to some characteristic groundwave-propagation problems. The introduction of GrMoMPE has made it possible to do direct and accurate comparisons and reliable physical interpretations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.