Abstract

Herein, a novel ultrasensitive molecularly imprinted sensor (MIS) for selective determination of a new direct acting anti-HCV velpatasvir (VELPR) was developed and fabricated for the first time. The fabricated MIS based on modification of a glassy carbon electrode (GCE) with multi-walled carbon nanotubes-gold nanoparticles (MWCNTs-AuNPs) composite after deposition on electro-synthesized 3D starfish like hollow nickel skeleton (3D SH-Ni S) to increase conductivity and effective surface area of MIS to amplify its signal. After that, the electrode was coated with molecularly imprinted polymer (MIP) by in situ electro-polymerization forming cavity with specific affinity and natural binding sites to VELPR. Differential pulse voltammetry (DPV) was used for selective detection of VELPR in complex matrices whereas, scanning electron microscope (SEM) and cyclic voltammetry (CV) were employed to characterize the fabricated sensor. All experimental factors concerning fabrication and chemical sensing properties were carefully studied and optimized. Under the optimized variables, the fabricated sensor exhibited excellent DPV response to VELPR over the range of 0.649–80.0 ng mL−1 with LOD of 0.21 ng mL−1. In addition to high sensitivity and selectivity, the sensor response to VELPR was highly reproducible and stable. Moreover, the fabricated sensor was successfully applied for the determination of VELPR in complex biological matrices and pharmaceutical tablets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.