Abstract

AbstractRechargeable aluminum batteries (RABs) are extensively developed due to their cost‐effectiveness, eco‐friendliness, and low flammability and the earth abundance of their electrode materials. However, the commonly used RAB ionic liquid (IL) electrolyte is highly moisture‐sensitive and corrosive. To address these problems, a 4‐ethylpyridine/AlCl3 IL is proposed. The effects of the AlCl3 to 4‐ethylpyridine molar ratio on the electrode charge–discharge properties are systematically examined. A maximum graphite capacity of 95 mAh g−1 is obtained at 25 mA g−1. After 1000 charge–discharge cycles, ≈85% of the initial capacity can be retained. In situ synchrotron X‐ray diffraction is employed to examine the electrode reaction mechanism. In addition, low corrosion rates of Al, Cu, Ni, and carbon‐fiber paper electrodes are confirmed in the 4‐ethylpyridine/AlCl3 IL. When opened to the ambient atmosphere, the measured capacity of the graphite cathode is only slightly lower than that found in a N2‐filled glove box; moreover, the capacity retention upon 100 cycles is as high as 75%. The results clearly indicate the great potential of this electrolyte for practical RAB applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.